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Abstract. A model of a two-leg spin-S ladder with two additional frustrating diagonal exchange
couplingsJD , J ′D is studied within the framework of the nonlinear sigma model approach. The
phase diagram has a rich structure and contains 2S gapless phase boundaries which split off the
boundary to the fully saturated ferromagnetic phase whenJD andJ ′D become different. For the
S = 1/2 case, the phase boundary is identified as separating two topologically distinct Haldane-type
phases as discussed recently by Kim and co-workers (Kim E H, Fáth G, Śolyom J and Scalapino D J
1999e-printcond-mat/9910023).

1. Introduction

Low-dimensional spin models still continue to attract a considerable amount of attention from
researchers, both as regards theoretical and experimental aspects. Since the famous prediction
of Haldane in 1983 [1] of different behaviours of Heisenberg spin chains with integer and
half-integer values of the spinS, which was based on a mapping to the nonlinear sigma
model (NLSM), the NLSM approach has been recognized as an important tool in studying
spin systems and has found numerous applications (see, e.g., [2] for a review). Normally, the
NLSM approach does not give good numerical results; however, it is usually able to capture
the topology of the phase diagram.

During the recent upsurge of interest in spin-ladder models, several researchers have
successfully applied the NLSM to describe anN -leg spin-S ladder [3–5]. An essential sim-
ilarity to the case of a single chain was found: for half-integerS, the ladders with even or odd
numbers of legsN are respectively gapped and gapless. A natural question arose, namely, that
of whether the properties of a gapped phase of, say, a two-leg spin-1

2 ladder are in some sense
equivalent to those of the Haldane phase of a spin-1 chain.

Several arguments were given in favour of the positive answer to the above question [6–8].
In particular, it was shown that by adding extra interactions one can introduce a suitable
generalization of the pure ladder model, increasing the number of parameters in the phase
space, and then one can find a path in this generalized phase space which smoothly (i.e.,
without crossing any phase boundaries) leads from the ladder model to a certain composite
representation of a spin-1 chain [6, 8]; moreover, it was demonstrated [6, 7] that a two-leg
S = 1

2 ladder has nonzero string order which is believed [9] to be a characteristic feature of
the Haldane phase.

On the other hand, it turned out that other generalizations may have very different
properties; for instance, for the model of a ‘diagonal ladder’ with additional equal-strength
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diagonal interactions, which also yields a composite-spin representation of a spin-1 chain [10],
one finds numerically that the ‘usual’ ladder is separated from the composite-spin-1 Haldane
phase by a transition line [11,12]. An exactly solvable model exhibiting similar features was
also constructed [13].

Recently, Kimet al [14] have made an interesting observation, noticing that there are
actually at leasttwo different definitions of the string order for a two-leg spin-1

2 ladder
(depending on whether one combines theS = 1

2 spins on the rungs or on the diagonals).
Exploiting the analogy with the topological quantum numbers which can be introduced for
short-range valence bond states on a square lattice [15], they have conjectured that those two
definitions of the string order distinguish betweentwo different Haldane-type phases. This
assumption was supported by the results of the bosonization study of two generalizations of
the ladder model.

In the hope of getting a better understanding of the physics of the spin ladder, and to
search for possible new phase transitions, we find it interesting to study the phase diagram
of the generalized ladder model with unequal diagonal couplings. We consider the model
determined by the Hamiltonian

Ĥ = JL
∑
α=1,2

∑
i

Sα,i · Sα,i+1 + JR
∑
i

S1,i · S2,i +
∑
i

(JDS1,i · S2,i+1 + J ′DS2,i · S1,i+1)

(1)

whereSα,i are spin-S operators at theith rung;α = 1, 2 distinguishes the ladder legs. The
model is shown schematically in figure 1. AtJD = J ′D = 0 one recovers a regular ladder, while
atJ ′D = 0 the model is equivalent to a zigzag chain with alternation of the nearest-neighbour
interaction. InterchangingJD andJ ′D is obviously equivalent to interchanging the legs of the
ladder, so it is sufficient to restrict ourselves to theJD > J ′D case. The pointJD = J ′D is in a
certain sense special, since it allows an additional symmetry operation—that is, interchanging
the spins on every other rung is then equivalent to interchangingJD andJL.

(A) (B) (C)

JL
S2,2n-1 S2,2n

S1,2n
JLS1,2n-1

JD
/JD

JR

Figure 1. A schematic representation of the generalized ladder model
(1). A, B, C denote different commensurate classical ground-state
configurations.

The phase space of the model is three dimensional and is determined by the three ratios
of exchange constants, e.g.,JD/JR, J ′D/JR, JL/JR. We will show that forJD 6= J ′D the
phase diagram of the above model always possesses 2S gapless phase planes, which split off
the boundary to the fully saturated ferromagnetic phase atJD = J ′D. We consider in detail
the most interesting caseS = 1

2 and show that the gapless plane is an extension of one of the
transition lines discussed in reference [14]. In the next section we briefly describe the mapping
to the NLSM, section 3 contains the discussion of the results, and, finally, section 4 gives a
brief summary.

2. Results of the mapping to the nonlinear sigma model

To map the model (1) to a NLSM, we use the well-known technique of the spin-coherent-
states path integral; this technique is well described in reviews and textbooks [2], and here
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we will not give a complete derivation but rather indicate just the main steps. We choose a
four-spin plaquette as an elementary magnetic cell; then there are four classical ground states
commensuratewith this choice of cell, namely a ferromagnetic state (F) and three modulated
states shown in figure 1 and denoted as A, B and C. At thenth plaquette we introduce four
variablesmn, ln, un, vn, defined as the following linear combinations of the ‘classical’ spin
vectors (parameters of the coherent states):

ln = 1

4S
(S1,2n−1 + S2,2n−1− S1,2n − S2,2n)

mn = 1

4S
(S1,2n−1 + S2,2n−1 + S1,2n + S2,2n)

un = 1

4S
(S1,2n + S2,2n−1− S1,2n−1− S2,2n)

vn = 1

4S
(S2,2n−1 + S2,2n − S1,2n−1− S1,2n)

(2)

which satisfy the following four constraints:

m2 + l2 + u2 + v2 = 1

(m + l) · (u + v) = 0

(m− l) · (u− v) = 0

(m + v) · (u + l) = 0.

(3)

These variables we consider as smoothly varying functions of the space coordinatexn = na
when passing to the continuum limit; one should mention that the aboveansatzis essentially
similar to that used by Śeńechal [4]. The advantage of theansatz(2) is that it conserves the total
number of degrees of freedom, which is important for avoiding ambiguities in the mapping,
as was recently realized for the example of inhomogeneous spin chains [16].

The order parameters for the four commensurate classical ground-state configurations
F, A, B, C are respectivelym, u, v, l. Comparing the energies of those configurations,
one may obtain a ‘draft’ of the classical phase diagram which neglects the presence of any
incommensurate ground states; for the moment we are mainly interested in the commensurate
antiferromagnetic part, and the conditions for the existence of spiral phases will be obtained
later. One thus may treatm as a small fluctuation, and obtain different field descriptions
starting from one of the configurations A, B, C. Massive degrees of freedom can be integrated
out in a usual way, and in each case one obtains the final effective action in the form of a
NLSM:

Aeff/h̄ = 1

2g

∫ ∫
dξ dτ {(∂τn)2 − (∂ξn)2} + θ

4π

∫ ∫
dξ dτ n · (∂ξn× ∂τn) (4)

wheren is the corresponding order parameter, andξ = x/a, τ = ct/a are dimensionless
space-time variables,a being the lattice constant along the leg direction. For each of the
classical ‘phases’ A, B, C the coupling constantg and the topological angleθ are given by the
following expressions:

Phase A:JR + 2JL > 0, J +
D < JR, J +

D < 2JL:

gA = JR + 2JL
2S
√
WA

θA = 0 mod 2π

WA = 1

4
(JR + 2JL)

{
2JL − J +

D −
(J−D )

2

JR − J +
D

}
> 0.

(5)



962 C-M Nedelcu et al

Phase B:JR + J +
D > 0, 2JL < J +

D, 2JL < JR:

gB = JR + J +
D

2S
√
WB

θB = 4πSJ−D
JR + J +

D

WB = 1

4
{(JR + J +

D)(J
+
D − 2JL)− (J−D )2} > 0.

(6)

Phase C:J +
D + 2JL > 0, JR < J +

D, JR < 2JL:

gC = J +
D + 2JL

2S
√
WC

θC = 0 mod 2π

WC = 1

4
(J +
D + 2JL)

{
2JL + J +

D −
(J−D )

2

J +
D − JR

}
> 0.

(7)

Here for the sake of convenience we have introduced the notation

J±D ≡ (JD ± J ′D).
The spin-wave velocity for each case is given byc = 2

√
WSa/h̄. The inequalities define the

boundaries of the domains of validity of the corresponding mapping (not all of them represent
real phase boundaries, as will be discussed later). The boundaries defined byWA,B,C = 0
represent just the classical conditions for the transition into a spiral phase. One may observe
that there is no spiral phase atJ−D = 0.

Phase Fhas to be considered separately, and it is easy to obtain its boundaries using the
linear spin-wave theory. There are two magnon branches with the energies

ε±(q) = −S(JR + J +
D + 2JL) + 2SJL cosq ± S{(JR + J +

D cosq)2 + (J−D sinq)2}1/2 (8)

and from the condition of positiveness ofε± it is easy to obtain the boundaries of the F phase.
They are determined by the inequalities

JR + J +
D > 0 JR + 2JL > 0

WF ≡ −2JL − J +
D + (J−D )

2/(JR + J +
D) > 0.

(9)

At WF = 0, ε−(q) changes sign at once in a finite interval of wave vectors nearq = 0, signal-
ling the first-order transition,ε−(q = π) vanishes at the lineJR + 2JL = 0, andε+(q = 0)
becomes zero at the lineJR + J +

D = 0.
One can see that only in the B case is there a nontrivial topological term, and the condition

of gaplessnessθ = (2n + 1)π yields

J−D =
2n + 1

4S
(JR + J +

D) n = 0, 1, . . . ,2S − 1. (10)

One can see that the 2S gapless planes (10) exist only at nonzeroJ−D , and atJ−D = 0 they split
off the boundaryJR + J +

D = 0 to the ferromagnetic phase.

3. Discussion

Let us concentrate on the caseS = 1
2 as being the most important one. ForS = 1

2, a sketch
of the resulting phase diagram is presented in figure 2 in the form of two-dimensional slices
through the phase space at three fixed values ofJ−D (JR is considered to be positive).

At J−D = 0 there are no other gapless lines except the boundaries of the ferromagnetic
phase, and there is no spiral phase. The coupling constantsgA, gB diverge at the AB boundary
J +
D = 2JL, which indicates that this classical phase boundary gets destroyed by quantum

fluctuations. On the other hand, all the coupling constants remain finite at the BC and AC
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Figure 2. A sketch of the phase diagram of the model (1); shown are the slices in the three-
dimensional phase space at fixedJ−D ≡ JD − J ′D : (a) J−D = 0; (b) J−D = JR ; (c) J−D = 3JR/2.
Thick solid and dashed lines denote the second- and first-order transition boundaries, respectively.
Thin dashed lines indicate crossovers between different classical configurations; the coupling
constant diverges at those lines. A, B, C are classical configurations shown in figure 1, F denotes the
fully saturated ferromagnetic phase, and S stands for the spiral ‘phase’ inside which our approach
is not valid. H1 and H2 denote topologically different Haldane-type phases withOeven 6= 0 and
Oodd 6= 0 according to the classification of reference [14].

boundaries, but they undergo a jump when crossing the boundaries, which suggests a first-
order transition. This is in agreement with the numerical [11, 12] and bosonization [11, 14]
studies, showing the presence of a first-order transition withJD = JR/2 being the asymptote
for the transition line atJL → ∞. There is also a ‘mirror’ transition lineJL = JR/2 due
to theJD ↔ JL symmetry. According to the classification of reference [14], these two first-
order transition lines separate two topologically different Haldane-type phases withOeven 6= 0
(phases A, B) andOodd 6= 0 (phase C); below, we refer to these two phases as H1 and H2 (see
figure 2(a)).

At finite J−D , the spiral phase (S) appears classically in a finite region of the phase diagram.
The S region is for us just a ‘white spot’ which cannot be treated within the present approach;
to construct an effective description for the S phase, one has to employ different techniques.
At finite J−D the gapless lineJ +

D = 2J−D − JR starts to split off the BF boundaryJ +
D = JR, and

the FS boundary becomes first order, as one sees from the behaviour ofε−(q) (cf. (8)). The
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coupling constantsgA,B,C diverge at the boundaries to the S phase, which suggests destruction
of any (quasi-) long-range order, and thus one may expect the gapless line to terminate at the
BS boundary, though it may in principle continue as a first-order transition line.

It is worthwhile to look at the particular caseJ−D = JR. According to reference [14], the
gapless lineJ +

D = JR in this case also separates two phases with different string order, which
implies that the lower portion of the B phase belongs to the H2 class. It is also known that in
this case the gapless line continues at largerJL as the first-order line (recall thatJ−D = J +

D = JR
corresponds to the uniform spin chain with next-nearest-neighbour interaction). Thus, it
becomes clear that additional phase boundaries should exist somewhere inside the spiral
‘phase’, to achieve a proper separation of H1- and H2-type phases (see figures 2(b), 2(c)).
This could be an interesting topic for future work.

4. Summary

We have studied the phase diagram of the generalized ladder model with unequal diagonal
couplingsJD, J ′D within the framework of the nonlinear sigma model. We show that the phase
diagram has a rich structure including several first- and second-order transition boundaries.
There exist 2S gapless phase boundaries which split off the boundary to the ferromagnetic
phase atJD 6= J ′D. We consider the caseS = 1

2 in more detail and show that the gapless
plane is an extension of one of the transition lines discussed in reference [14] which separate
Haldane-type phases with different topological order parameter. Still, several features of the
phase diagram remain unclear and require further study.

Acknowledgments

This work was supported by the German Federal Ministry for Research and Technology
(BMBFT) under the contract 03MI5HAN5. AK gratefully acknowledges the hospitality of the
Hannover Institute for Theoretical Physics. CN was supported by the DFG-Graduiertenkolleg
‘Quantum Field Theory Methods in Particle Physics, Gravity, and Statistical Physics’.

References

[1] Haldane F D M1983Phys. Lett.A 93464
Haldane F D M1983Phys. Rev. Lett.501153

[2] Fradkin E 1991Field Theories of Condensed Matter Systems(Reading, MA: Addison-Wesley)
Manousakis R 1991Rev. Mod. Phys.631

[3] Khveshchenko D V 1994Phys. Rev.B 50380
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